Universal moduli-dependent string thresholds in Z2 × Z2 orbifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Moduli - Dependent String Thresholds in Z

In the context of a recently proposed method for computing exactly string loop corrections regularized in the infra-red, we determine and calculate the universal moduli-dependent part of the threshold corrections to the gauge couplings for the symmetric Z 2 ×Z 2 orbifold model. We show that these corrections decrease the unification scale of the underlying effective field theory. We also commen...

متن کامل

Transversality for Z2-orbifolds

Equivariant transversality phenomena are studied for PL locally linear actions of the group with two elements. In this setting with stability assumptions, the obstruction to making a given map f : M ! N transverse to the xed set N Z 2 is given by an element of Sect(BL(M ; N) # M Z 2), i.e. a generalized cohomology class with twisted coeecients. Here BL(M ; N) is a spectrum whose homotopy groups...

متن کامل

Universal Moduli - Dependent String Thresholds in Z 2 ×

In the context of a recently proposed method for computing exactly string loop corrections regularized in the infra-red, we determine and calculate the universal moduli-dependent part of the threshold corrections to the gauge couplings for the symmetric Z 2 ×Z 2 orbifold model. We show that these corrections decrease the unification scale of the underlying effective field theory. We also commen...

متن کامل

Z2-double cyclic codes

A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x r −1)×Z2[x]/(x − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. ...

متن کامل

Constrained Percolation on Z2

We study a constrained percolation process on Z, and prove the almost sure nonexistence of infinite clusters and contours for a large class of probability measures. Unlike the unconstrained case, in the constrained case no stochastic monotonicity is known. We prove the nonexistence of infinite clusters and contours for the constrained percolation by developing new combinatorial techniques which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters B

سال: 1996

ISSN: 0370-2693

DOI: 10.1016/0370-2693(96)00230-4